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LETI’ER TO THE EDITOR 

Driven diffusive systems with a moving obstacle: a variation on 
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t Department of Physics, Rutgers University, Piscataway, NJ 0885.5, USA 
‘t Department of Mathematics and Physics, Rutgers University, New Brunswick, NJ 08903, 
USA 

Received 20 February 1990 

Abstract. We present some surprising results of computer simulations on the driven diffusive 
motion of a ‘polymer’ in a ‘sea of monomers’. The particles move on a lattice subject to 
a driving field that biases jump rates in a direction perpendicular to the polymer which 
occupies L sites (monomers occupy one site). This produces a stochastic asymmetric simple 
exclusion dynamics of the polymer-monomer lattice system. Simulations on a two- 
dimensional square lattice exhibit unexpected behaviour of the polymer velocity as a 
function of its length: the velocity V ( L )  first decreases and then increases. This may have 
relevance for the size segregation of particulate matter which results from the relative 
motion of different size particles induced by shaking (the Brazil nuts phenomenon). The 
location of the minimum of V (  L )  depends on the nature of the driving fields and on the 
density. 

When you shake a can of mixed nuts, the Brazil nuts rise to the top. This phenomenon 
is the canonical example of size segregation of particulate matter produced by shaking. 
In general, size segregation as a result of vibratory motion is an important dynamical 
process common to many industrial systems. Powder separation by the vibration of 
a non-uniform mixture [ l ]  is just one example: the larger particles move relative to 
the smaller ones, yielding a system segregated primarily on the basis of size. 

Rosato, Strandburg, Prinz and Swendsen (RSPS) [ l ,  21 conducted a series of com- 
puter simulations on mixtures exhibiting such a segregation. Specifically, they studied 
a two-dimensional system of large and small disks of equal mass. The disks are subject 
to a gravitational force in the vertical direction and interact with each other and with 
the walls of their ‘container’ through a hard-core potential. They simulated the shaking 
process by quickly (instantaneously) lowering the ‘container’ by some prescribed 
amplitude. The disks, which now have space to move, manoeuver themselves according 
to Monte Carlo metropolis dynamics under the influence of gravity. After all of the 
disks have settled, they consider one cycle complete and repeat the process. Their 
simulations gave results consistent with experiments; after many shakes, the larger 
disks lie on top of the smaller ones in a non-equilibrium stationary state. 

RSPS explained the phenomenon as follows: in the shaking process particles are 
subjected to stochastic forces which make them move both vertically and horizontally, 
as long as there are voids large enough to receive them. Large particles which require 
large voids will then be blocked by smaller disks jumping in front of them. This 
prevents the large particle from falling as rapidly as the smaller ones, and it therefore 
moves up relative to the container. 
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Motivated by their work, we investigated the behaviour of a simple lattice gas 
system which should exhibit a similar size-dependent relative motion. Namely, we 
studied the relative steady state velocities of different sized particles in a driven diffusive 
system on a periodic lattice. The relative velocity between the large and small particles, 
U( L )  = V( L) - V( l) ,  is in the direction opposite to the ‘gravitational field’ due to the 
‘blocking’ of the larger by the smaller ones which can jump ‘diffusively’ in front of it. 

We measured the velocity of a single large particle, a polymer, as a function of its 
length, L, expecting to see it decrease monotonically. We were, therefore, surprised 
to discover that after an initial decrease, the velocity actually reached a minimum at 
some critical length and then increased. This critical length depended on the driving 
field and monomer density. That is, the segregation rates (between the large particle 
and the smaller ones far from it) first increased, and then decreased. 

The equilibrium properties of rnulticomponent lattice gases and polymers in solution 
have been extensively studied for many years. For the non-equilibrium properties this 
is not so, the effort having been directed almost exclusively at simple lattice gases 
[3,4,5]. The presence of the large particle whose motion is not Markovian complicates 
the analysis and make exact results difficult to obtain. We therefore turned to computer 
simulations. We present the results of these simultations and offer a heuristic explana- 
tion of what we believe to be occurring. 

We chose the simplest model exhibiting the dynamical behaviour of a two- 
component mixture: a two-dimensional square lattice, Z 2 ,  with two types of particles- 
monomers and (rigid) polymers. A monomer, as the name implies, occupies one site, 
and a polymer more than one. The particles interact by exclusion; no more than one 
particle per site is permitted. A monomer at site x waits an exponential time with 
parameter one and then selects a direction a, a =north, south, east or west, with 
probability b,. If the neighbouring site y in the direction a is unoccupied at that time, 
the particle jumps to that site; otherwise it does not move. 

For a system containing only monomers the product measure is stationary for the 
dynamics [ 5 ] .  That is, if one places monomers at each site x independently with 
probability p, then this distribution is stationary with respect to the dynamics. Con- 
sequently, there is no structure to the density profile as seen from a tagged monomer. 

Placing a polymer into the system complicates matters. We assumed, in order not 
to introduce more difficulties, that the polymer is rigidly aligned in the horizontal 
(east-west) direction. That is, all of the sites occupied by it lie in the same row. The 
polymer moves according to a dynamics similar to that of the monomers: we choose 
one site on the polymer, say the most eastern, to control its dynamics. The polymer 
waits an exponential time with mean one and then selects a direction a with prob- 
ability 6, and attempts to jump in that direction. Every site which the polymer would 
occupy after the move must be empty to permit a move. For a polymer to move to 
the east or the west, then only the site next to that end must be unoccupied. If, on 
the other hand, it tries to move north or south, L sites must be empty for the 
move to be made. Note that the size of the polymer does not affect the exponential 
waiting time. 

When the driving field E = 0, that is, all 6; are equal, we have a Kawasaki (particle 
conserving) dynamics at infinite temperature. The stationary state of the system as 
seen from the polymer is still a product measure at some specified uniform monomer 
density p. Our interest then is in the stationary states of this system when there is a 
constant field in the -y-direction: this means that bsouth > bnonh. To find the behaviour 
of the system we camed out computer simulations. 
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We performed the simulations on two-dimensional square lattices containing N 2  
sites with periodic boundary conditions in both directions. First we place the tracer 
particle of length L, L = 1,2, . . . , on the empty lattice. We then randomly occupy some 
of the remaining sites with p(  N 2  - L) monomers so that the probability of finding a 
monomer on a non-tracer site is exactly known. 

The random number generator selects a lattice site. If unoccupied, it chooses 
another. Once an occupied site is reached, the particle at that location attempts a 
move to a neighbouring site as dictated by the jump rates. With probability b, = be,,, = 
b,#,,, the particle attempts to move eastward or westward. It attempts south with 
probability b,, = bsou:h and north with probability 1 - bll - 2b, = bnonh. This simulates a 
continuous time process. For most (though not all) of our work, we imagine an infinite 
driving field that prevents moves north, that is, 611 + 2b,  = 1. 

After the decision is made (by the random number generator) in what direction to 
move, the occupancy of the target site is checked. If empty, the move is successful, 
and the process repeats. For the polymer to move north or south all of the adjacent 
L sites in the chosen direction must be empty. The jump rates guarantee that the only 
conserved quantity is particle number. 

Finite size effects and finite run times were our two overriding concerns. To estimate 
these, we simulated pure monomer systems with different jump rates and particle 
densities and measured the average velocity of a tracer monomer. For a pure monomer 
system we know exactly the average velocity of a tracer monomer, V( 1) = 6(  1 - p ) ,  
where 6 = bsouth- bnonh. This stems from the previously mentioned fact that a tracer 
monomer will see a uniform distribution at density p, so the probability that the site 
adjacent to the monomer is empty is 1 -p .  We compared the simulations to the exact 
theoretical value and for runs of 40 000 Monte Carlo steps per site (MCS) found that 
the simulated monomer velocities were typically within one per cent of their exact 
values. 

In order to estimate the finite size effects for polymers we checked the velocity 
dependence of two different length polymers on a series of six lattices of increasing 
size. In figure 1 we plot the velocity of an L = 3  and an L = 6  polymer as a function 
of lattice size. For these plots the density of monomers is 0.5 and the jump rates are 
b, =0.25 and bli =0.5. We let the system evolve for 10000 MCS so that it reaches a 
stationary state. Over the next 40000 MCS interval we determine the tracer velocity. 
We define this quantity as A X / A t  where A X  is the net displacement in the field 
direction and A t  measured in MCS is the time over which the displacement occurred. 
These velocities are determined from three independent runs, each of 40 000 MCS. It 
appears that the velocities approach an asymptotic value as the lattice size 
increases. The surprising thing here is that for large lattices V(6)> V(3) in spite of 
the hard-core exclusion dynamics which requires more sites to be empty for longer 
polymers to move. We provide a heuristic explanation of this phenomenon later in 
this letter. 

In figure 2 we show the normalised velocity, V ( L ) /  V( l),  of the polymer as a 
function of its length for three different driving fields. The jump rates are as above. 
For these simulations we used a 64 x 64 lattice. The system evolved to a stationary 
state for 10000 MCS, and we determined velocities over the following 40000 MCS 

interval. We find as before that beyond a certain length which depends on the field 
that the velocity actually starts to increase. 

We have simulated the dynamics for various monomer densities and driving fields 
and find that the minimum is controlled by the ratio of field bias to perpendicular 
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Figure 1 .  Tracer velocity as a function of inverse lattice size. Squares represent a tracer 
with L = 3 and filled circles, L = 6. The monomer density and velocity are both 0.5. 
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Figure 2. Normalised velocity V (  L)/ V (  1) as a function of length for infinite driving field. 
Squares represent p = 0.5, b, = 0.25 and bll = 0.5. Filled circles represent p = 0.5, b, = 0.25 
and bl,=0.4. Triangles, ~ ~ 0 . 5 ,  b,=0.35, and b,,,,,,,,,=0.3. The lattice is 64x64. 

jump rates. A smaller ratio shifts the minimum to longer polymers and, given some 
fixed parameters, we see no minima for the lengths simulated. Strong finite size effects 
prohibit us from studying longer polymers on a 64 x 64 lattice. 

One might be tempted, as a first approximation, to say that the velocity is given 
by V ( L )  = b( l  -p ) ' .  This assumes a uniform density profile and ignores correlations 
between monomers. Such an approximation fails badly. 

To explain the anomalous behaviour of the velocity V (  L), we proceed in two steps: 
we argue first that the blocking is primarily at the edges of a long polymer and second 
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that the presence of the polymer produces a density profile in which the density at the 
edges actually decreases as L increases. 

To simplify matters, consider the case where the polymer has length L >> 1, and 
there is no motion northward. Since even one occupied site below the polymer will 
block the polymer motion, the field will create a low-density region below and a 
high-density region above the polymer. Particles from the sides diffuse into this region 
and are carried ‘down-wind’. The longer the polymer, the farther downward and 
sideways will extend the depletion region, and the faster monomers will move when 
in this region. In fact, the field will most likely carry the monomers away before they 
can move under the centre region of the polymer far inward from the edges. Most of 
the sites directly under the polymer are never occupied. It is only near the edges that 
blocking occurs. Now, the larger this depletion region in the horizontal direction, the 
fewer particles there are to come in from the sides to block the polymer, and so its 
velocity increases. This effect is enhanced by the motion of the polymer itself. As the 
polymer travels through this low-density area it creates a fan-shaped low-density region 
which now extends above the polymer. This is due entirely to the motion of the 
polymer. For a fixed polymer there is a special symmetry in the monomer-hole 
dynamics which prevents this wing from forming. 

The density profiles, as seen from the polymer, bear out this picture qualitatively. 
There is a depletion region below the polymer which sweeps above it in a wing-like 
shape. Immediately above the polymer there is a region where the density is higher 
than the initial monomer density. This is illustrated in figure 3. 

Figure 3. We show the high-density regions of monomers as viewed from the moving frame 
of the polymer. High-density sites ( p  > 0.5) appear as black squares with size proportional 
to density. Sites with low density appear white. Note the wing or fan effect. The lattice 
is 128 x 128, b, =0.25, b,, = 0.5. 
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To carry out a quantitative analysis seems difficult. There is obviously a delicate 
balance between two competing effects: (1) longer polymers require more sites to be 
unoccupied to move, and (2) longer polymers deplete a larger region. The net results, 
as the simulations show, depend on the density of monomers and details of the jump 
rates. 

We explain the change in the curves when the driving field is reduced or the 
perpendicular jump rates are enhanced by noting that under these conditions monomers 
can penetrate farther inward under the polymer before the field carries them away. 
With such rates, more sites under the polymer can be affected and it is not until longer 
polymers are used that other factors can negate this effect. As noted previously when 
the field is decreased, the minimum is shifted to longer polymers. 

As further evidence for our interpretation we have (at the suggestion of H van 
Beijeren) carried out simulations in which there was no exclusion between the 
monomers-the polymer, however, was still blocked by the monomers. The velocity 
V ( L )  now decreased monotonically with L. This indicates that the increase in the 
motion of the monomers with lowered density is an important ingredient in creating 
the wing effect. 

This wing effect, however, does not appear to be necessary for the anomalous 
behaviour. We have performed simulations where the polymer is fixed at the origin, 
and the monomers act as before. What we record is the number of times that all of 
the sites immediately below the polymer are empty. A plot of percentage of time empty 
against polymer length bears a striking resemblance in form to the velocity curves for 
the moving polymer; see figure 4. For this case we can rigorously prove, and computer 
simulations support, that the average density at the sites along the polymer axis is 
equal to the initial uniform density (no wing effect). We find this by constructing an 
equivalent dynamics which exploits the precisely opposite behaviour of monomers 
and holes under the action of the field. We see a surprising behaviour in spite of the 
fact that there is no longer a wing effect. The motion, in the mobile polymer case, 

Length 

Figure 4. Percentage of time which all of the sites immediately below the polymer is empty 
as a function of length. The density is 0.5, 6, = 0.25 and 6,l= 0.5. The lattice is 128 x 128 
and the data was recorded over 90 OOO MCS. 
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then, creates the wing-like feature which serves to enhance an already existing 
anomalous behaviour. 

We summarise our argument as follows: the action of the field is to transform the 
blocking from a bulk effect to an edge or boundary effect. This, coupled with the 
reduced density at the boundaries due to the entire length of the polymer, is responsible 
for the results we find in computer simulations. Assuming our heuristics are correct, 
a natural question is: what is the asymptotic velocity as a function of length? Does it 
approach a constant value, or does it decrease again? 

In an effort to better understand the phenomena discussed here, we are currently 
studying diffusive flow with a drift past a fixed obstacle?. This sounds like a textbook 
problem but is apparently not in the literature. We are also still hoping to obtain some 
rigorous results concerning the stationary state as viewed from a tagged polymer. 

What implications does this anomalous behaviour have on the model of RSPS? 
There are certainly important differences between their model and ours. In particular 
their system does not permit the establishment of a stationary state, since after each 
shake the system settles to rest. This stationary state relative to the tracer particle may 
be the essential feature which allows for the surprising behaviour. It seems, however, 
possible that such behaviour might be observed at greater amplitudes of shaking and 
larger ratio of disk radii. That is, larger disks might rise at a slower rate. 

We would like to thank P Garrido, G Eyink, J Keller, C Maes, J Steif, H van Beijeren, 
R Swendsen, P Ferrari, T Vaughan and J-S Wang for useful discussions. This research 
was partly supported by AFOSR Grant AF87-0010C and FJA was partly supported 
by a Rutgers University Excellence Fellowship. 
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